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The measurement of the TEMPERATURE

If a certain amount of heat Q is supplied or subtracted from a body, this will change its temperature T.

The heat Q (which is a form of energy and is measured in Joule) alters the molecular activity of the bodies,
causing variation of the temperature T. Therefore, it follows immediately that the temperature is a quantity
that provides a status information about the "energy state" of the body.

Q =) We can refer to the zero law of thermodynamics: if there is thermal
equilibrium, or there is no heat Q exchange between two bodies A and B
placed in contact, the bodies A and B are at the same temperature !

A I B This property is transitive: if there is a thermal equilibrium between the
1 bodies A and B and between the bodies B and C, there is also thermal
equilibrium between the bodies A and C, although not in contact ...
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However, the “operative methods” for the measurement of temperature are realized by means of the
properties of bodies and materials and their change with temperature ...

e the variations of physical dimensions - the volume AV or the length Al, according to the form of the bodyj;

* the variations of electrical properties - the resistance AR;

e the variations of physical state - from solid to liquid, to vapor or vice versa, very useful to define the
reference temperatures T (see below).



The gas thermometer experience:
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Gas-thermometer temperature scale.



The official temperature scale (IS) is the thermodynamic scale where the temperature unit is the kelvin K but, it is
also1K=1°C

For calibrating all industrial thermometers, six fixed temperature points are recommended, defined as
the equilibrium temperatures between 2 phases between: solid/liquid/vapor at the standard pressure
of 1 atmosphere (101325 Pa).

1. Oxygen point (-182.96°C): equilibrium T between O(L) and O(V)

2. Water triple point (+0.01°C): equilibrium T between H,0O(S) , H,O(L) , H,O(V)
3. Water vapor point (+100°C): equilibrium T between H,O(L) e H,O(V)

4. Zync point (+419.58°): equilibrium T between Zn(S) e Zn(L)

5. Silver point (+961.93°C): equilibrium T between Ag(S) e Ag(L)

6. Gold point (+1064.43°C): equilibrium T between Au(S) e Au(L)

ITS-90 Fixed-Point Cells

The International Temperature Scale of 1990 (/TS-90) is the “de facto”
standard used in the industrialized world by international convention




Bimetallic Thermometers :

Mostly used as automatic thermal switches for safety temperature monitoring !
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Electric industrial Thermometers :
Resistance temperature Detectors (RTD): Pt100
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Signal conditioning and correct circuit connections for RTD :
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Conceptual circuits:
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Thermistors: practical examples ...
Due to a “fair resistance changes” with

temperature, they can be connected to
a simple ohmmeter.
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Thermocouples : Thermojunction Thermojunction
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http://www.circuitielettronici.it/Tabella Temperature K.pdf
http://www.circuitielettronici.it/Tabella Temperature K.pdf
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§ Thermoelectric effects :
[ — T T
] i

seTg=T,

E rame | : Ae T
f : i [seTo>T,

millivoltmetro ll }
rame A costantana B rame ” e
TA TB

SEEBEK effect: at the junctions of two isothermal metallic materials a potential difference is established. This is
the main effect, and it is also the one that originates the Ae when the two junctions are not at the same
temperature.

PELTIER effect: if in the circuit of the thermocouple the junctions are at temperature T, > T,, then with Ae # 0,
and the circulation of electric current is allowed, this tends to re-establish the thermal equilibrium, cooling the
joint B at a higher temperature and heating the joint A at lower temperature.

THOMSON effect: if a conductor is not isothermal, a potential gradient appears on it.
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Thermocouple voltage output as a function of temperature

for some common thermocouple materials. Reference junction is at
0°C. (From R. P. Benedict, Fundamentals of Temperature, Pressure and
Flow Measurements, 3d ed., Wiley, New York, 1984)

Standard Thermocouple Compositions*

Expected
Type Positive Negative Bias Error”

S Platinum Platinum/ +1.5°Cor 0.25%

10% rhodium
R Platinum Platinum/ +1.5°C

13% rhodium
B Platinum/ Platinum/ +0.5%

30% rhodium 6% rhodium

T Copper Constantan +1.0°Cor 0.75%
J Iron Constantan +2.2°Cor 0.75%
K Chromel Alumel +2.2°Cor 0.75%
E Chromel Constantan +1.7°Cor 0.5%
Alloy Designations

Constantan: 55% copper with 45% nickel
Chromel: 90% nickel with 10% chromium

Alumel: 94% nickel with 3% manganese, 2% aluminum, and 1% silicon

? From Temperature Measurement ANSI PTC 19.3-1974.

buse greater value; these limits of error do not include installation errors.




Chromel

Circuital connections:
Rule of the intermediate metals

Millivoltmeter
Messuring Constantan Chromel
junction
Material A
Material B Material B Reference
2 &
Junction 3 = ™~ Junction 4 , :
T, Measuring device T, Its OKonly if T;=T,
Chromel Copper
COPPER WIRE
¥ + __CONSTANTAN A +
e Millivoltmeter
THERMOCOUPLE V , Constantan Copper
§ Measulrmg o |
& = ) = junction
|ce bath
ICE BATH
REFERENCE REFERENCE Reference
JUNCTIONS junction

. it's always OK !
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Thermocouple with electronic junction (with reference temperature T, different from 0°C)
Rule of the intermediate temperatures
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if Ts=T,#T,=0°C the thermocouple detects Ae x T, - T, that can not be interpreted directly on the tables !
The semiconductor thermometer measures T =T, the compensation circuit processes the E < T, - T, and
adds it to the Ae produced by the thermocouple. The voltmeter receives the compensated voltage E=Ae +E

comp
that can be interpreted on the thermocouple tables.



Electronic semiconductor temperature sensor:
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For all those situations in which the contact between the physical phenomenon and thermometer is NOT possible:

RADIATION thermometers

The thermal radiation of a body originates by thermal agitation of it’s atoms but, outside the body, it is nothing
more than a regular electromagnetic radiation with a wavelength between 0,3 e 40 um.

The spectrum of visible radiation is with a wavelength from 0.1 to less than 1 micron therefore, a large part of the

thermal radiation lies in the infrared.
The bodies with an ideal thermal radiation are the blacks bodies, as they completely absorb the radiation hitting
them and, at a given temperature, they emit the highest amount of heat radiation.

Electromagnetic Wave
~<+— Magnetic Field (B)

Electric .
Field (E)




The physical law that describes this phenomenon is the Planck ‘s law :

which provides the spectral radiation level L, as a function of the
wavelength A of the radiation and of the absolute temperature T of
the black body.

The figure shows a representation of the law for several values of T :
with increasing T the radiance L, increases but shifts to smaller
wavelengths A ...
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The real bodies behavior differ from the black body and this fact is reckoned in terms of emissivity €
(dimensionless parameter):

where L is the radiance of the black body and L ,, the radiance of the real body at the same
temperature T of the black body. Real body radiance therefore can be written as :

Cl E..-'-'..T I"1"'r
Lag= [ L m2 x ST']
A (E AT — l)

Together with the emissivity £ other two parameters are also considered: the reflectance p and
transmittance @ of surrounding bodies. If the body is in thermal equilibrium, the radiated energy is equal
to the energy absorbed and we can write the following relationship :

t+p+0 =1

Then we must also take into account the losses due to air or dust along the optical path, the object's size and
its distance from the thermometer (area length error) ...
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The detectors are divided into thermal detectors (bolometers) and photodetectors (pyrometers)

IR Detectors
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THERMOGRAPHY :

The cameras are all individually calibrated by comparison
with a black body at a controlled temperature T .

For each pixel of the image, the voltage-temperature
characteristic V-T is stored in the LUT memory
(Look-Up-Table)
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Thermal camcorder :
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64,4°C
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1. Connessione di un fusibile difettosa

2. Connessione allentata

3. Ossidazione di un contatto ad alto voltaggio
4. Connessione effettuata non correttamente



